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Summary	

ì  We	classify	48683	heartbeats	of	29	pa2ents	into	4	
classes	
ì  normal,	arterial	contrac2on,	junc2onal	contrac2on	

and	ventricular	contrac2on	beats	

ì  We	adapt	Mul2nomial	Logis2c	Regression	(MLR)	as	
a	classifier	of	cardiac	arrhythmia		
ì  It	learns		the	posterior		probability	distribu2ons	of		

each	class	
ì  It	is	applied	to	arrhythmia		detec2ons	
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Medical	Context	&	Motivation	

ì  Electrocardiogram	(ECG):	
ì  reflects	ac2vity	of	the	central	blood	circulatory	

system.		
ì  provides	informa2on	on	the	normal	or	pathological	

physiology	of	heart	ac2vity.		
ì  is	an	important	non-invasive	clinical	tool	for	the	

diagnosis	of	heart	diseases.		

ì  Early	and	quick	detec2on	and	classifica2on	of	ECG	
arrhythmia	is	important,	especially	for	the	
treatment	of	pa2ents	in	the	intensive	care.	
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Medical	Context	

ì  Computer	aided	diagnos2c	(CAD)	systems	have	
been	used	for	ECG	classifica2on.	

ì  Popular	techniques:	
ì  Mul2variate	sta2s2cs,	decision	trees,	fuzzy	logic,	

expert	systems	and	hybrid	approaches		

ì  The	most	important	step	is	the	integra2on	of	
suitable	feature	extractor	and	paFern	classifier.	
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Data	

ì  29	pa2ents	of	the	MIT-BIH	db.	Condi2ons:	
ì  ventricular	contrac2on	beats	(PVC)	
ì  premature	arterial	contrac2on	beats	(PAC)	
ì  premature	junc2onal	contrac2on	beats	(PJC)		

ì  48683	heartbeat	samples	
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Beats	

N:	normal	 A:	arterial	
contrac2on	

J:	junc2onal	
contrac2on	

V:	ventricular	
contrac2on		

43943	 711	 32	 3997	
90.26%	 1.46%	 0.07%	 8.21%	
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Example	of	ECG	Beat	
AFributes	 Meaning	

RR	precedent:	
RR0		

Distance	between	the	
peak	of	the	current	beat	R	
and	the	previous	one		

RR	next	:	RRn		
	

Distance	between	the	
peak	of	the	present	R	and	
the	next	beat		

QRS	complex		 Beginning	of	the	Q-wave	
and	the	end	of	the	S	wave		

Comp	 The	ra2o	RR0/RRs	
PP	 Peak	to	peak	of	the	R	wave	

of	the	QRS	complex		
Energy		 Energy	of	the	QRS	complex		
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Data	Preparation	

ì  R	peaks	were	iden2fied	by	the	Tompkins	algorithm	
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A	non-trivial	classification	task	

ì  Classifying	heartbeats	with	only	one	feature,	e.g.	
RR0,	RRS,	QRS,	etc.	is	complex	due	to	the	lack	of	
specific	threshold	for	each	class.		
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Distribution	of	RRo	and	RRn	
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Distribution	of	features	PP	and	ENERGY	of	
QRS	complex	in	different	classes	
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The	distribution	of	features	QRS	and	COMP	
in	different	classes		

ì  We	can	separate	
between	V	and	N	
classes	

ì  This	is	exploited	in	
our	approach	
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Correlation	
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RR0	 RRN	 QRS	 COMP	 PP	 ENERGY	 CLASS	
RR0	 1	 49.7%	 43.9%	 28.4%	 3.7%	 9.1%	 36.6%	
RRN	 49.7%	 1	 41.5%	 1.9%	 5.7%	 3.5%	 4.7%	
QRS	 43.9%	 41.5%	 1	 33.0%	 7.6%	 6.1%	 41.1%	
COMP	 28.4%	 1.9%	 33.0%	 1	 17.3%	 5.5%	 49.4%	
PP	 3.7%	 5.7%	 7.6%	 17.3%	 1	 18.6%	 13.4%	

ENERGY	 9.1%	 3.5%	 6.1%	 5.5%	 18.6%	 1	 0.3%	
CLASS	 36.6%	 4.7%	 41.1%	 49.4%	 13.4%	 0.3%	 1	

•  QRS	and	COMP	exhibit	maximum	rela2onships	within	
the	corresponding	classes.		

•  This	confirms	that	QRS	and	COMP	are	very	important	
in	arrhythmias	detec2on.	
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Correlation	

13	

The	histograms	indicate	the	presence	of	a	linear	correla2on.		

RR0	

RRN	

QRS	

COMP	

PP	

ENERGY	

CLASS	

RR0	 RRN	 QRS	 COMP	 PP	 ENERGY	 CLASS	
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Features	

ì  RR0:	R-R	interval	of	the	beat	
ì  the	difference	between	the	QRS	peak	of	the	present	and	

previous	beat	

ì  RRS:	ra2o		RR1-to-RRo	
ì  the	ra2o	of	the	present	over	the	previous	R-R	interval	

ì  QRS	width	
ì  calculated	according	to	the	Tompkins	algorithm	

ì  Each	beat	is	represented	as	3-dimensional	vector.		
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Multinomial	Logistic	Regression	(MLR)	

ì  a	supervised-learning	algorithm	

ì  a	classifier	able	to	dis2nguish	among	K	classes	

ì  Inputs	the	feature	vectors	of	L	labelled	training	
samples:	DL	=	{(X1,	Y1),	.	.	.	,	(XL,	YL)},	which	is	called	
the	training	set.		

ì  Computes	the	posterior	class	distribu2on	using	to	
es2mate	regression	coefficients	w.		
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Logistic	Regression	–	Training	phase	

The	general	MLR	model	is	computed	as:	

	

ì  w	is	defined	as	(w(1),	…,	w(K-1))		

ì  w(k)	is	the	set	of	logis2c	regression	coefficient	for	class	k		

ì  x	=	(x1	,	.	.	.	,	xi	)	are	the	feature	vectors	of	training	samples.		
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Logistic	Regression	-	Kernel	

ì  A	Gaussian	Radial	Basis	Func2on	(RBF)	is	defined	as:		

ì  It	describes	the	training	vectors	and	offers	improved	
data	separability	in	the	transformed	space.		
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Logistic	Regression	–	Training	phase	

ì  The	posterior	probability	density	of	w	with		
ì  YL:	set	of	labels	
ì  XL:	set	of	vectors	of	labelled	samples	
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Logistic	Regression	-	Coefficients	

Expecta2on	Maximiza2on	(EM)	is	used	to	es2mate	the	
regression	coefficients:	

where	the	log-likelihood	func2on	of	w	is	computed	as:		
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Logistic	Regression	–	Test	phase	

ì  Regression	coefficients	(w)	are	constant	value	inputs.	

ì  Posterior	class	probability	densi2es	of	each	feature	
vector	are	computed.	

ì  The	class	label	of	each	feature	vector	is	determined	by	
the	index	of	the	maximum	posterior	class	probability.	
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Evaluation	–	Confusion	Matrix	

ì  Columns	represent	heart	beats	in	es2mated	classes,	
while	rows	represent	beats	in	real	classes.		
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N	 V	 A	 J	 Other	
N	 42016	 7	 9	 3	 0	
V	 16	 3947	 3	 0	 0	
A	 4	 12	 692	 0	 0	
J	 0	 0	 3	 29	 0	

Other	 0	 0	 0	 1	 0	
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Evaluation	
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Metric	 Score	
Last	Correct	Rate	 93.13%	
Last	Error	Rate	 6.87%	
Inconclusive	Rate	 0.00%	
Classified	Rate	 100.00%	
Sensi2vity	 92.86%	
Specificity	 94.17%	
Posi2ve	Predic2ve	Value	 81.25%	
Nega2ve	Predic2ve	Value	 97.98%	
Posi2ve	Likelihood	 15.94%	
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Evaluation:	Parameters	

ì  CorrectRate:	Correctly	Classified	Samples	/	Classified	Samples		
ì  ErrorRate:	Incorrectly	Classified	Samples	/	Classified	Samples		
ì  LastCorrectRate:	CorrectRate	computed	only	during	the	last	results’	update.		
ì  LastErrorRate:	ErrorRate	computed	only	during	the	last	results’	update.		
ì  InconclusiveRate:	Nonclassified	Samples	/	Total	Number	of	Samples		
ì  ClassifiedRate:	Classified	Samples	/	Total	Number	of	Samples		
ì  SensiAvity:	Correctly	Classified	Posi2ve	Samples	/	True	Posi2ve	Samples		
ì  Specificity:	Correctly	Classified	Nega2ve	Samples	/	True	Nega2ve	Samples		
ì  PosiAvePredicAveValue:	Correctly	Classified	Posi2ve	Samples	/	Posi2ve	

Classified	Samples		
ì  NegaAvePredicAveValue:	Correctly	Classified	Nega2ve	Samples	/	Nega2ve	

Classified	Samples		
ì  PosiAveLikelihood:	Sensi2vity	/	(1	-	Specificity)		
ì  NegaAveLikelihood:	(1	-	Sensi2vity)	/	Specificity		
ì  Prevalence:	True	Posi2ve	Samples	/	Total	Number	of	Samples.		
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Conclusions	

ì  Medical	decision	making	requires	automa2c	
diagnos2c	support.	

ì  Our	method	provides	explicit	knowledge	base	on	
class	probabili2es	es2mated	on	a	medical	database.		

ì  MLR	improves	the	transparency	and	interpretability	
of	the	classifica2on	process.	

ì  In	the	future,	we	aim	to	integrate	fuzzy	par22on	
rules	into	this	method.	
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Thank	you!	Any	questions?	
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