Multinomial Logistic Regression for Arrhythmia Detection

Omar Behadada¹, Marcello Trovati², Chikh MA¹, Nik Bessis², **Yannis Korkontzelos**²

> ¹Tlemcen University, Algeria ² Edge Hill University, UK

email: Yannis.Korkontzelos@edgehill.ac.uk

Summary

- We classify 48683 heartbeats of 29 patients into 4 classes
 - normal, arterial contraction, junctional contraction and ventricular contraction beats
- We adapt Multinomial Logistic Regression (MLR) as a classifier of cardiac arrhythmia
 - It learns the posterior probability distributions of each class
 - It is applied to arrhythmia detections

2

Medical Context & Motivation

Electrocardiogram (ECG):

- reflects activity of the central blood circulatory system.
- provides information on the normal or pathological physiology of heart activity.
- is an important non-invasive clinical tool for the diagnosis of heart diseases.
- Early and quick detection and classification of ECG arrhythmia is important, especially for the treatment of patients in the intensive care.

Medical Context

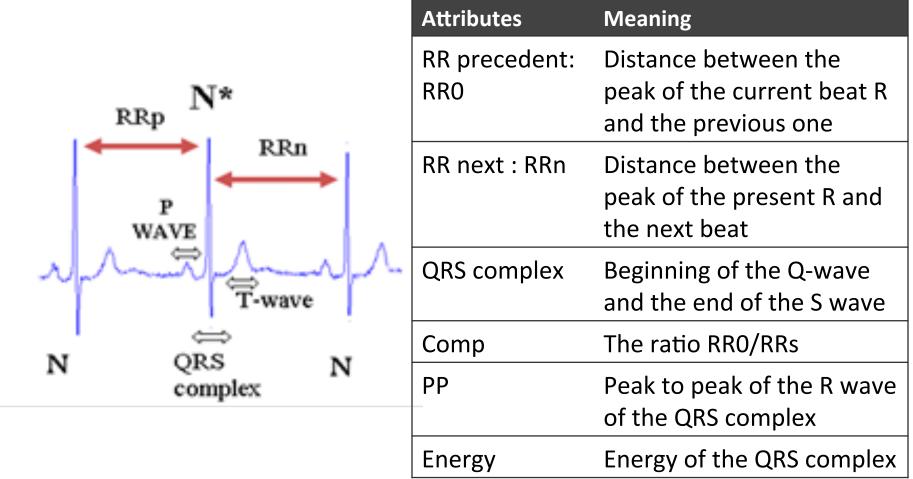
- Computer aided diagnostic (CAD) systems have been used for ECG classification.
- Popular techniques:
 - Multivariate statistics, decision trees, fuzzy logic, expert systems and hybrid approaches
- The most important step is the integration of suitable feature extractor and pattern classifier.

5

- 29 patients of the MIT-BIH db. Conditions:
 - ventricular contraction beats (PVC)
 - premature arterial contraction beats (PAC)
 - premature junctional contraction beats (PJC)
- オ 48683 heartbeat samples

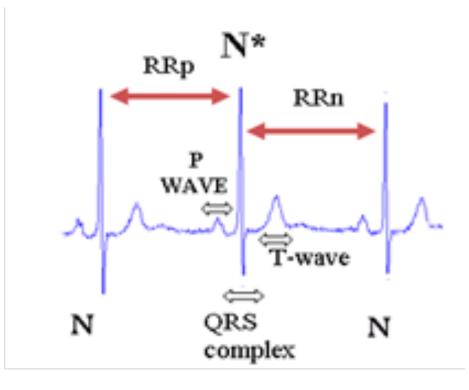
Beats					
N: normal	A: arterial	J: junctional	V: ventricular		
N. HOIMai	contraction	contraction	contraction		
43943	711	32	3997		
90.26%	1.46%	0.07%	8.21%		

Example of ECG Beat



Data Preparation

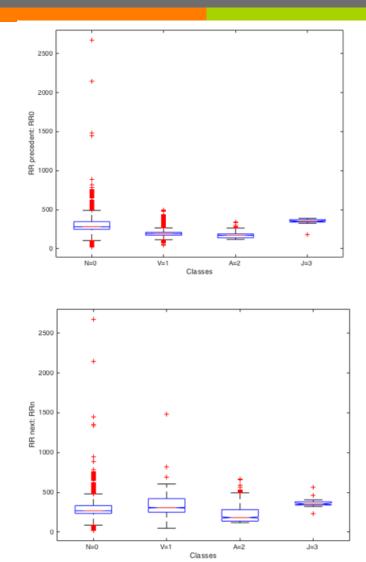
R peaks were identified by the Tompkins algorithm



A non-trivial classification task

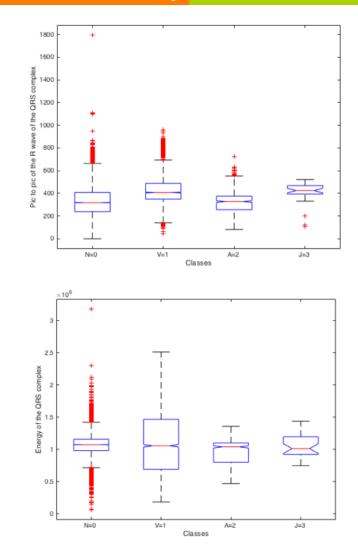
Classifying heartbeats with only one feature, e.g. RRO, RRS, QRS, etc. is complex due to the lack of specific threshold for each class.

Distribution of *RRo* and *RRn*



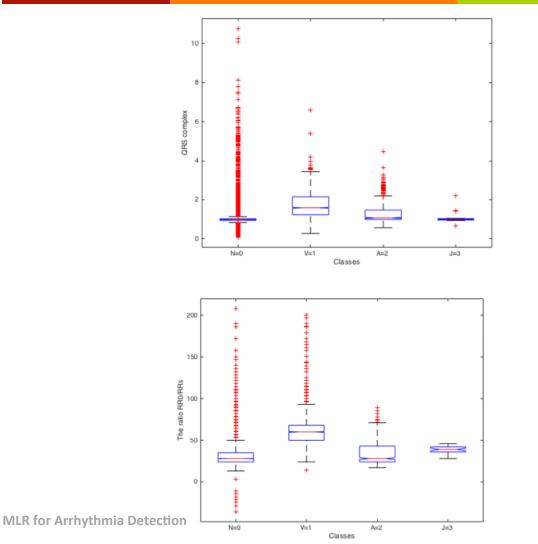
MLR for Arrhythmia Detection

Distribution of features PP and ENERGY of QRS complex in different classes



MLR for Arrhythmia Detection

The distribution of features QRS and COMP in different classes



- We can separate between V and N classes
- This is exploited in our approach

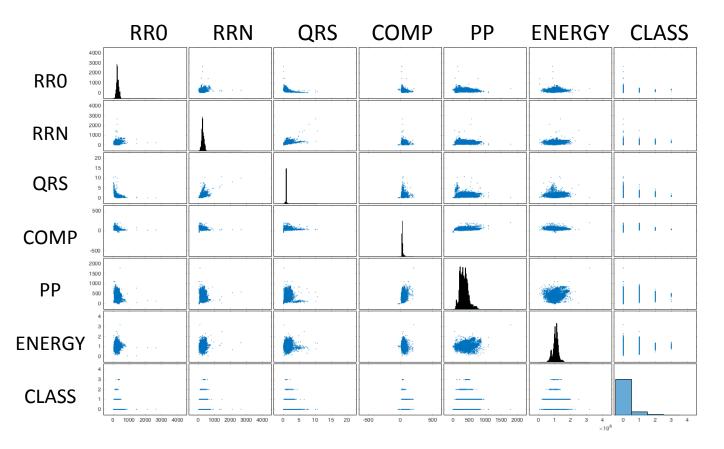
11

Correlation

	RR0	RRN	QRS	COMP	РР	ENERGY	CLASS
RR0	1	49.7%	43.9%	28.4%	3.7%	9.1%	36.6%
RRN	49.7%	1	41.5%	1.9%	5.7%	3.5%	4.7%
QRS	43.9%	41.5%	1	33.0%	7.6%	6.1%	41.1 %
COMP	28.4%	1.9%	33.0%	1	17.3%	5.5%	49.4%
РР	3.7%	5.7%	7.6%	17.3%	1	18.6%	13.4%
ENERGY	9.1%	3.5%	6.1%	5.5%	18.6%	1	0.3%
CLASS	36.6%	4.7%	41.1%	49.4%	13.4%	0.3%	1

- QRS and COMP exhibit maximum relationships within the corresponding classes.
- This confirms that QRS and COMP are very important in arrhythmias detection.

Correlation



The histograms indicate the presence of a linear correlation.

Features

- **RRO**: *R*-*R* interval of the beat
 - the difference between the QRS peak of the present and previous beat
- **RRS**: ratio *RR1-to-RRo*
 - ➔ the ratio of the present over the previous R-R interval
- **QRS width**
 - calculated according to the Tompkins algorithm
- Each beat is represented as 3-dimensional vector.

Multinomial Logistic Regression (MLR)

- a supervised-learning algorithm
- a classifier able to distinguish among K classes
- Inputs the feature vectors of L labelled training samples: D_L = {(X₁, Y₁), . . . , (X_L, Y_L)}, which is called the training set.
- Computes the posterior class distribution using to estimate regression coefficients w.

Logistic Regression – Training phase

The general MLR model is computed as:

$$P(y_1 = k | x_i, w) = \frac{\exp(w^{(k)} x_i)}{\sum_{k=1}^{K} \exp(w^{(k)} x_i)}$$

- **w** is defined as $(w^{(1)}, ..., w^{(K-1)})$
- \checkmark $w^{(k)}$ is the set of logistic regression coefficient for class k
- **7** $x = (x_1, \ldots, x_i)$ are the feature vectors of training samples.

Logistic Regression - Kernel

A Gaussian Radial Basis Function (RBF) is defined as:

$$K(x_i, x_j) = \exp\left(\frac{-||x_i - x_j||^2}{2\sigma^2}\right)$$

It describes the training vectors and offers improved data separability in the transformed space.

Logistic Regression – Training phase

- The posterior probability density of w with
 - **7** Y_L : set of labels
 - **7** X_L : set of vectors of labelled samples

 $P(w|Y_L, X_L) \alpha p(Y_L|X_L, w) p(w|X_L)$

Logistic Regression - Coefficients

Expectation Maximization (EM) is used to estimate the regression coefficients:

 $\hat{w} = \arg \max(l(w) + \log p(w|X_L))$

where the log-likelihood function of *w* is computed as:

$$(w) \equiv \log p(Y_L|X_L, w \equiv \log \prod_{i=1}^L P(y_i|x_i, w))$$
$$\equiv \sum_{i=1}^L x_i^T w^{(y_i)} - \log \sum_{j=1}^K \exp\left(x_i^T w^{(j)}\right).$$

Logistic Regression – Test phase

- Regression coefficients (w) are constant value inputs.
- Posterior class probability densities of each feature vector are computed.
- The class label of each feature vector is determined by the index of the maximum posterior class probability.

Evaluation – Confusion Matrix

	Ν	V	Α	J	Other
N	42016	7	9	3	0
V	16	3947	3	0	0
Α	4	12	692	0	0
J	0	0	3	29	0
Other	0	0	0	1	0

Columns represent heart beats in estimated classes, while rows represent beats in real classes.

Evaluation

Metric	Score
Last Correct Rate	93.13%
Last Error Rate	6.87%
Inconclusive Rate	0.00%
Classified Rate	100.00%
Sensitivity	92.86%
Specificity	94.17%
Positive Predictive Value	81.25%
Negative Predictive Value	97.98%
Positive Likelihood	15.94%

Evaluation: Parameters

- **CorrectRate**: Correctly Classified Samples / Classified Samples
- ErrorRate: Incorrectly Classified Samples / Classified Samples
- **LastCorrectRate**: CorrectRate computed only during the last results' update.
- LastErrorRate: ErrorRate computed only during the last results' update.
- InconclusiveRate: Nonclassified Samples / Total Number of Samples
- ClassifiedRate: Classified Samples / Total Number of Samples
- Sensitivity: Correctly Classified Positive Samples / True Positive Samples
- **Specificity**: Correctly Classified Negative Samples / True Negative Samples
- PositivePredictiveValue: Correctly Classified Positive Samples / Positive Classified Samples
- NegativePredictiveValue: Correctly Classified Negative Samples / Negative Classified Samples
- PositiveLikelihood: Sensitivity / (1 Specificity)
- NegativeLikelihood: (1 Sensitivity) / Specificity
- **Prevalence**: True Positive Samples / Total Number of Samples.

Conclusions

24

- Medical decision making requires automatic diagnostic support.
- Our method provides explicit knowledge base on class probabilities estimated on a medical database.
- MLR improves the transparency and interpretability of the classification process.
- In the future, we aim to integrate fuzzy partition rules into this method.

Thank you! Any questions?

